Robust Bayesian compressed sensing with outliers
نویسندگان
چکیده
منابع مشابه
Robust Bayesian Compressed sensing
We consider the problem of robust compressed sensing whose objective is to recover a high-dimensional sparse signal from compressed measurements corrupted by outliers. A new sparse Bayesian learning method is developed for robust compressed sensing. The basic idea of the proposed method is to identify and remove the outliers from sparse signal recovery. To automatically identify the outliers, w...
متن کاملRobust Bayesian compressed sensing over finite fields: asymptotic performance analysis
This paper addresses the topic of robust Bayesian compressed sensing over finite fields. For stationary and ergodic sources, it provides asymptotic (with the size of the vector to estimate) necessary and sufficient conditions on the number of required measurements to achieve vanishing reconstruction error, in presence of sensing and communication noise. In all considered cases, the necessary an...
متن کاملMulti-contrast reconstruction with Bayesian compressed sensing.
Clinical imaging with structural MRI routinely relies on multiple acquisitions of the same region of interest under several different contrast preparations. This work presents a reconstruction algorithm based on Bayesian compressed sensing to jointly reconstruct a set of images from undersampled k-space data with higher fidelity than when the images are reconstructed either individually or join...
متن کاملUnmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing
Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...
متن کاملBayesian Approach for Recursive Compressed Sensing
We consider the problem of recursively reconstructing a sequence of sparse signals using compressed sensing measurements. We assume that each consecutive signal vectors of the sparse signal sequence are partially overlapped. Our aim in this work is to propose an effective recursive method for the reconstruction of the sequence of signals based on Bayesian compressed sensing.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Signal Processing
سال: 2017
ISSN: 0165-1684
DOI: 10.1016/j.sigpro.2017.05.017